35 research outputs found

    Life-cycle GHG emission Factors of Final Energy in China

    Get PDF
    AbstractIn this manuscript, a model for the estimation of the life-cycle GHG emission factors of final energy and an empirical study of China is presented. A linear programming method is utilized to solve the problem that several forms of final energy are utilized in the life-cycle of one certain type of final energy. Nine types of final energy are considered, including raw coal, crude oil, raw natural gas, treated coal, diesel, gasoline, fuel oil, treated natural gas, and electricity. The results indicate that the life-cycle GHG emission factors of final energy in China slightly decreased in recent years

    China's energy-water nexus in 2009 by Sankey Diagram

    Get PDF

    The Status Quo and Development Trend of Low-carbon Vehicle Technologies in China

    No full text
    Three types of low-carbon vehicle technologies in China are reviewed. Potential effects are listed for those integrated energy-saving technologies for conventional vehicles. Low carbon transitions, including alternative vehicle power train systems and fuels, are discussed on their development status and trends, including life cycle primary fossil energy use and greenhouse gas emissions of each pathway. To further support the low-carbon vehicle technologies development, integrated policies should seek to: (1) employ those integrated energy-saving technologies, (2) apply hybrid electric technology, (3) commercialize electric vehicles through battery technology innovation, (4) support fuel cell vehicles and hydrogen technology R&D for future potential applications, (5) boost the R&D of second generation biofuel technology, and (6) conduct further research on applying low-carbon technologies including CO2 capture and storage technology to coal-based transportation solutions. Ou, X., and X. Zhang, 2010: The status quo and development trend of low-carbon vehicle technologies in China. Adv. Clim. Change Res., 1, doi: 10.3724/SP.J.1248.2010.00034

    Life-Cycle Analyses of Energy Consumption and GHG Emissions of Natural Gas-Based Alternative Vehicle Fuels in China

    Get PDF
    Tsinghua life-cycle analysis model (TLCAM) has been used to examine the primary fossil energy consumption and greenhouse gas (GHG) emissions for natural gas- (NG-) based alternative vehicle fuels in China. The results show that (1) compress NG- and liquid NG-powered vehicles have similar well-to-wheels (WTW) fossil energy uses to conventional gasoline- and diesel-fueled vehicles, but differences emerge with the distance of NG transportation. Additionally, thanks to NG having a lower carbon content than petroleum, CNG- and LNG-powered vehicles emit 10–20% and 5–10% less GHGs than gasoline- and diesel-fueled vehicles, respectively; (2) gas-to-liquid- (GTL-) powered vehicles involve approximately 50% more WTW fossil energy uses than conventional gasoline- and diesel-fueled vehicles, primarily because of the low efficiency of GTL production. Nevertheless, since NG has a lower carbon content than petroleum, GTL-powered vehicles emit approximately 30% more GHGs than conventional-fuel vehicles; (3) The carbon emission intensity of the LNG energy chain is highly sensitive to the efficiency of NG liquefaction and the form of energy used in that process

    Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050

    No full text
    This paper presents the Gompertz function of per capita GDP and vehicle stock to forecast the vehicle ownership of China through to 2050 against a background of increasing energy use and CO2 emissions associated with the potential demands of on-road vehicles. We forecast the level of vehicle stock in China based on the extant patterns of vehicle development in Organisation for Economic Co-operation and Development (OECD) countries, Europe, the United States and Japan. The results show that the OECD pattern and European pattern are more suitable for describing China’s vehicle stock growth when compared with Japanese and U.S. patterns. The study finds that China’s vehicle stock has developed as an S-shaped curve. During the forecast period, the inflection point of the increasing curve appears around the year 2030, with the annual growth of vehicle ownership increasing from 6.13% to 9.50% in the prior period prior and subsequently dropping to 0.45% in 2050. Based on the sensitivity analysis and robustness check, the impact of different Gompertz curve parameters and GDP growth rates on vehicle stock projection are analyzed

    Establishing a Framework to Evaluate the Effect of Energy Countermeasures Tackling Climate Change and Air Pollution: The Example of China

    No full text
    Due to the large-scale utilization of high-carbon fossil energy, considerable amounts of critical air pollutants (CAPs) and greenhouse gas (GHG) have been emitted, which has led to increasingly serious global climate change and local air pollution problems. Given that climate change and air pollution have the same source, energy systems, the rational development and use of energy for collaborative governance should be emphasized to solve these problems in parallel. This paper presents a multi-dimensional, multi-perspective and achievable analysis framework to quantitatively evaluate the emission reduction effects of energy countermeasures aimed at tackling climate change and governing air pollution in support of sustainable development. As a typical developing country pursuing sustainable development, China is taken as an example to demonstrate an application of the proposed framework to assess the emission reduction effects of energy countermeasures issued for tackling climate change and governing air pollution on CAPs and GHG. The results indicate that the key energy actions proposed in this paper would result in emission reductions of approximately 6 million tons (Mt) of CAPs and 575 Mt of GHG in 2016. By 2020 and 2030, emission reductions of 12 Mt of CAPs and 1094 Mt of GHG and of 21 Mt of CAPs and 1975 Mt of GHG, respectively, will be achieved. The proposed framework can effectively help China identify the emissions reduction effect of a given energy countermeasure and support the development of policy describing the next steps for tackling climate change and haze pollution. The proposed framework in this paper is also beneficial for countries similar to China in their efforts to simultaneously address climate change and improve air quality

    Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions

    No full text
    The rapid growth of vehicles has resulted in continuing growth in China's oil demand. This paper analyzes future trends of both direct and life cycle energy demand (ED) and greenhouse gas (GHG) emissions in China's road transport sector, and assesses the effectiveness of possible reduction measures by using alternative vehicles/fuels. A model is developed to derive a historical trend and to project future trends. The government is assumed to do nothing additional in the future to influence the long-term trends in the business as usual (BAU) scenario. Four specific scenarios are used to describe the future cases where different alternative fuel/vehicles are applied. The best case scenario is set to represent the most optimized case. Direct ED and GHG emissions would reach 734 million tonnes of oil equivalent and 2384 million tonnes carbon dioxide equivalent by 2050 in the BAU case, respectively, more than 5.6 times of 2007 levels. Compared with the BAU case, the relative reductions achieved in the best case would be 15.8% and 27.6% for life cycle ED and GHG emissions, respectively. It is suggested for future policy implementation to support sustainable biofuel and high efficient electric-vehicles, and the deployment of coal-based fuels accompanied with low-carbon technology.Alternative fuel Road transport China

    Alternative fuel buses currently in use in China: Life-cycle fossil energy use, GHG emissions and policy recommendations

    No full text
    The Chinese government has enacted policies to promote alternative vehicle fuels (AVFs) and alternative fuel vehicles (AFVs), including city bus fleets. The life cycle (LC), energy savings (ES) and GHG reduction (GR) profiles of AVFs/AFVs are critical to those policy decisions. The well-to-wheels module of the Tsinghua-CA3EM model is employed to investigate actual performance data. Compared with conventional buses, AFVs offer differences in performance in terms of both ES and GR. Only half of the AFVs analyzed demonstrate dual benefits. However, all non-oil/gas pathways can substitute oil/gas with coal. Current policies seek to promote technology improvements and market creation initiatives within the guiding framework of national-level diversification and district-level uniformity. Combined with their actual LC behavior and in keeping with near- and long-term strategies, integrated policies should seek to (1) apply hybrid electric technology to diesel buses; (2) encourage NG/LPG buses in gas-abundant cities; (3) promote commercialize electric buses or plug-in capable vehicles through battery technology innovation; (4) support fuel cell buses and hydrogen technology R&D for future potential applications; and (5) conduct further research on boosting vehicle fuel efficiency, applying low-carbon transportation technologies, and addressing all resultant implications of coal-based transportation solutions to human health and natural resources.Alternative fuel bus Life-cycle analysis Alternative fuel vehicle policy

    Life-cycle energy consumption and greenhouse gas emissions for electricity generation and supply in China

    No full text
    The Well-to-Meter (WTM) analysis module in the Tsinghua-CA3EM model has been used to examine the primary fossil energy consumption (PFEC) and greenhouse gas (GHG) emissions for electricity generation and supply in China. The results show that (1) the WTM PFEC and GHG emission intensities for the 2007 Chinese electricity mix are 3.247 MJ/MJ and 297.688 g carbon dioxide of equivalent (gCO2,e)/MJ, respectively; (2) power generation is the main contributing sub-stage; (3) the coal-power pathway is the only major contributor of PFEC (96.23%) and GHG emissions (97.08%) in the 2007 mix; and (4) GHG emissions intensity in 2020 will be reduced to 220.470 gCO2,e/MJ with the development of nuclear and renewable energy and to 169.014 gCO2,e/MJ if carbon dioxide capture and storage (CCS) technology is employed. It is concluded that (1) the current high levels of PFEC and GHG emission for electricity in China are largely due to the dominant role of coal in the power-generation sector and the relatively low efficiencies during all the sub-stages from resource extraction to final energy consumption and (2) the development of nuclear and renewable energy as well as low carbon technologies such as CCS can significantly reduce GHG emissions from electricity.Life-cycle analysis Greenhouse gas Power generation Electricity supply CCS China
    corecore